- 教学
- 下载
- 作文
- 知识
- 课件
- 教案
概要: 把握新课程教材,提高教学有效性 广州市第八十中学 冯平平 教学何谓有效?是教师精彩的上课,还是学生考试的高分数?现代观点强调:衡量教学的有效与否,是学生的进步与发展,是学生学习的长期性、可持续性,是教与学有机结合的体现。具体来说,我们的教学应关注学生良好学习品质、良好思维品质的培养,关注学生学习能力的提高,关注学生的情感、态度、科学价值观等个性品质的获得。 怎样实现和提高教学的有效性,是我们探讨的方向,也是新课程提出的目标。教材是实现课程目标,实施有效教学的重要资源,所以我们在教学中对新课程的教材要做到“三个把握”,从而实现“三个有效”,最终达到提高教学的质量。 (一)把握教材的空白空间,有效培养学生良好的学习品质 学习品质包括
把握新课程教材,标签:高中新课改,新课改心得体会,http://www.wenxue9.com
把握新课程教材,提高教学有效性
广州市第八十中学 冯平平
教学何谓有效?是教师精彩的上课,还是学生考试的高分数?现代观点强调:衡量教学的有效与否,是学生的进步与发展,是学生学习的长期性、可持续性,是教与学有机结合的体现。具体来说,我们的教学应关注学生良好学习品质、良好思维品质的培养,关注学生学习能力的提高,关注学生的情感、态度、科学价值观等个性品质的获得。
怎样实现和提高教学的有效性,是我们探讨的方向,也是新课程提出的目标。教材是实现课程目标,实施有效教学的重要资源,所以我们在教学中对新课程的教材要做到“三个把握”,从而实现“三个有效”,最终达到提高教学的质量。
(一)把握教材的空白空间,有效培养学生良好的学习品质
学习品质包括学习的兴趣、学习的方式、方法、学习的习惯,怎样有效培养学生良好的学习品质?在传统的教学中,一些教师(尤其是一些经验丰富的教师)为学生想得很周到,讲得清楚、详细,却使学生养成了过于依赖老师的习惯,处在被动接受的状态,这种把数学学习当成是记忆一些重要的数学结论,而忽视对学生的发展和可持续学习能力的培养的教学已不适应时代的发展。美国教育家布鲁纳曾说过“学习不是被动机械地形成刺激—反应的联结,而是主动形成认知结构的过程”。事实上,激发学生学习的兴趣,、改进学生的学习方式和学习方法,使学生学会学习,为终身学习和发展打下良好的基础正是高中数学课程的基本理念。新课程教材在编写设计上与旧教材有一个明显不同,新教材为引导学生自主发现、探索留有比较充分的空间。在教学中我们应充分利用这些空白空间,再给予学生发挥的时空,,促进他们主动地学习和发展。如:在人教版的《数学必修4》探讨三角函数的单调性,教材首先引导学生利用正弦函数在一个周期的图像探讨单调区间,并归纳推广出一般结论:对于余弦函数单调区间的探讨,教材没有画出图像,也没有写出结论,这就要求学生运用研究正弦函数性质的方法来研究余弦函数,探究后得出一般性结论,再进行填空。这是教材第一次出现这种填空,老师不能替代,只能引导学生逐步进行,也许学生没有什么收获;也许因此而完成不了当时的教学任务,但从效果看:由老师讲、学生学的短期效果较好;而由学生自己探究的却具有长期效应,兼顾长短期目标我们既要重视基础教学,又要从发展学生智力着想,采取循序渐进,鼓励引导学生不断改进学习方式,大胆进行思考、探究。教材也正是沿着这一方向进行,思考、探究、填充等逐渐增多,如由的公式怎样得到公式,结论是什么?由、公式又怎样得到,结论又是什么?我们的教材都在不断引导学生探究、推导、归纳,留下许多问号和空白让学生完成。又如学习完《数列》一章后,教材设计了全章知识结构框图的填充,让学生自己回顾小结。这些设计都给人耳目一新,对培养学生良好的学习品质有积极作用,复习的效果也事半功倍。让空白的地方丰富多彩也是学习方式丰富的表现,,许多学生能利用书本大片空白作归纳总结,记录自己的研究发现、学习心得;翻开学生的书本就能猜出学生学习的成效:学困生的书本崭新崭新的,空白的仍然是空白;而优等生的书本里面写满了东西,有的记录每单元的重点、难点;有的记录着错例的剖析或学习体会评注等等。有一个学生在学完了函数的图像与性质后,在旁边空白处写道:只要把看作一个整体,再结合基本函数的性质就能解决求最值、单调区间、对称等问题;有一个学生在《数学必修5》的的B组4题下面的空白处记录着:可以推广到;到现在为止求数列前n项和的方法已有三种:(1)倒序相加法:(2)公式法:(3)裂项相消法。充分把握课本的素材与空间,让学生探索求真,主动参与教学的全过程,有助于
(二)把握教材例、习题的潜在功能,有效培养学生良好的思维品质
(1)利用例、习题的典型性、示范性,训练学生思维的有序性和表述的条理性
思维和语言有密切关系。一个语言表达水平低的人绝不可能具有高度发展的思维,尤其是数学语言,要经常在文字语言、图形语言、符号语言中转换,而又侧重于用图形、符号语言来书写表达。在教学中发现,相当的学生对数学问题无从下手、不会分析思考,在推理过程中前后不连贯,思路混乱,也有的知道怎样做,但不会表达或表达不规范,处在有水倒不出的尴尬局面,严重影响水平的发挥。课本的例题尽管简单,但蕴含着重要的数学思维方法和思想精髓,具有典型性和示范性,有助于我们牢固掌握书本的基础知识和基本技能,进而提高综合能力。例如:《三角恒等变换》有角度变换、函数名称变换和式子结构间的变换,容易使学生摸不着头脑,必须经过系统的引导、训练。《数学必修4》P139例题:已知Sinα= , ,Cos- ,β是第三象限角,求Cos(α-β)的值。
要引导学生分析:要求Cos(α-β)的值,联系C(α-β)公式和本题的已知条件,需要作哪些准备?让学生逐步理清思路。解答从哪里开始书写有利,在书写过程要注意什么?由Sinα求Cosα时,开方取什么符号?总之,在学习例题时,让学生明确怎样分析、怎样联想,为什么要这样写。通过例题的学习,使学生领会分析思考的条理性和书写表达的规范性,练就扎实的基本功,从而达到举一反三、变式引申。